Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Gastroenterol ; 24(1): 142, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654165

RESUMO

OBJECTIVES: Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of the disease and its prognosis. METHODS: We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune function. RESULTS: We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy in both training and validation cohorts for patients with tumors, showing significantly longer survival times for those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated lncRNAs may influence disease outcome. CONCLUSIONS: The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable insights for future research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico , Cobre , Apoptose/genética , Masculino , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Análise de Sobrevida
2.
J Cell Mol Med ; 28(5): e18106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239038

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed cancer and ranks third in cancer-related fatalities. The recognized involvement of long noncoding RNAs (lncRNAs) in several cancer types, including HCC, inspired this study to explore a novel lncRNA's functional importance in the progression of HCC. To achieve this, lncRNA microarray analysis was conducted on three distinct sets of HCC tissues, revealing LINC00707 as the most significantly upregulated lncRNA. Further research into its biological functions has revealed that LINC00707 acts as an oncogene, driving HCC progression by enhancing the proliferation, migration and invasion of HCC cells. Mechanistic insights were provided, demonstrating that LINC00707 interacts with YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2), thus facilitating the ubiquitination-dependent degradation of the YTHDF2 protein. Furthermore, LINC00707 was found to influence the cytotoxicity of NK-92MI cells against HCC cells through its interactions with YTHDF2. These findings significantly contribute to a deeper understanding of the role played by LINC00707 in the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Matadoras Naturais/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
J Cell Mol Med ; 25(8): 3793-3802, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484498

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers with high prevalence and mortality, and it has brought huge economic and health burden for the world. It is urgent to found novel targets for HCC diagnosis and clinical intervention. Circular RNA (circRNA) has been reported to participate in many cancer progressions including HCC, suggesting that circRNA might paly essential role in HCC initiation and progression. Our study aims to found that potential circRNA participates in HCC development and its underlying molecular mechanisms. We obtained three pairs of HCC tissues and its adjacent normal tissues data from GEO DataSets. MTT, cell colony, EdU, wound-healing, transwell invasion and mouse xenograft model assays were used to demonstrate the biological functions of circCAMSAP1 in HCC progression. Furthermore, we conducted bioinformatics analysis, AGO2-RIP, RNA pull-down and luciferase reporter assays to assess the association of circCAMSAP1-miR-1294-GRAMD1A axis in HCC cells. The expression of circCAMSAP1 was up-regulated in HCC tissues compared with its adjacent normal tissues. Up-regulation of circCAMSAP1 promoted HCC biological functions both in vitro and in vivo. The promotive effects of circCAMSAP1 on HCC progression function through miR-1294/GRAMD1A pathway. CircCAMSAP1 was up-regulated in HCC tissues, and circCAMSAP1 up-regulated GRAMD1A expression to promote HCC proliferation, migration and invasion through miR-1294. CircCAMSAP1 might be a potential prognosis and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Circular/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Med ; 10(3): 833-842, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481351

RESUMO

Increasing circRNAs have attracted a lot of attention because of their significant biological effects in many diseases. It has been reported that circ_0008305 can modulate lung cancer progression. However, the association between circ_0008305 and hepatocellular carcinoma (HCC) needs to be well explored. In this current research, we studied the molecular function and potential mechanism of circ_0008305 in HCC progression. First, it was demonstrated that circ_0008305 was greatly increased in HCC tissues and cells. Moreover, we observed silencing circ_0008305 markedly repressed HCC cells in vitro growth and reduced tumor growth in vivo. Additionally, it was identified that circ_0008305 can act as a sponge of miR-660 while miR-660 targeted Bcl-2-associated athanogene 5 (BAG5). BAG5 belongs to a member of BAG family and it is involved in multiple diseases. We reported that circ_0008305 contributed to the inhibition of miR-660, which resulted in an upregulated expression of BAG5 in HCC. Subsequently, rescue assays were conducted and it was indicated that loss of BAG5 reversed the effects of miR-660 inhibitors on HCC partially. To sum up, it was illustrated by our study that circ_0008305-mediated miR-660-5p/BAG5 axis triggered HCC progression, which could provide a novel insight on the underlying mechanism of HCC progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Circular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Genet ; 11: 560546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381145

RESUMO

The driver genes regulating T-cell infiltration are important for understanding immune-escape mechanisms and developing more effective immunotherapy. However, researches in this field have rarely been reported in hepatocellular carcinoma (HCC). In the present study, we identified cancer driver genes triggered by copy number alterations such as CDKN2B, MYC, TSC1, TP53, and GSK3B. The T-cell infiltration levels were significantly decreased in both HCC and recurrent HCC tissues compared with the adjacent normal liver tissues. Remarkably, we identified that copy number losses of MAX and TP53 were candidate driver genes that significantly suppress T-cell infiltration in HCC. Accordingly, their downstream oncogenic pathway, cell cycle, was significantly activated in the low T-cell infiltration HCC. Moreover, the chemokine-related target genes by TP53, which played key roles in T-cell recruitment, were also downregulated in HCC with TP53/MAX deletions, suggesting that copy number losses in MAX and TP53 might result in T-cell depletion in HCC via downregulating chemokines. Clinically, the T-cell infiltration levels and chemokines activity could accurately predict the response of sorafenib, and the prognostic outcomes in HCC. In conclusion, the systematic analysis not only facilitates identification of driver genes and signaling pathways involved in T-cell infiltration and immune escape, but also gains more insights into the functional roles of T cells in HCC.

6.
Front Genet ; 11: 1029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193591

RESUMO

Recent studies have investigated the modulatory roles of long non-coding RNAs in the onset and progression of liver cancer. The present study aimed to elucidate the role of lnc-GNAT1-1 in liver cancer development and to explore the underlying mechanisms. Quantitative real-time polymerase chain reaction was performed to measure the expression levels of lnc-GNAT1-1 in cancerous tissues from patients with liver cancer and in liver cancer cell lines. The proliferative ability and apoptotic rates of liver cancer cells were measured using the counting kit-8 (CCK-8), colony formation, and flow cytometry assays. The abilities to invade and migrate were measured using Transwell assays. Epithelial-mesenchymal transition (EMT)-related proteins, E-cadherin, N-cadherin, and vimentin, were measured using western blotting. A nude mouse model was injected with xenografts to evaluate tumor growth in vivo. Downregulation of lnc-GNAT1-1 was observed in cancerous tissues from patients with liver cancer and in liver cancer cell lines, and low expression levels of lnc-GNAT1-1 were related to advanced TNM stage. Lnc-GNAT1-1 knockdown promoted invasion, migration, and proliferation of liver cancer cells and inhibited apoptosis, while lnc-GNAT1-1 upregulation exerted the opposite effects. The expression levels of lnc-GNAT1-1 negatively correlated with in vivo tumor growth in a xenograft nude mouse model. Mechanistic experiments revealed that lnc-GNAT1-1 exerted anti-tumor effects in liver cancer cells by inhibiting EMT. In conclusion, this study suggests that lnc-GNAT1-1 suppresses liver cancer progression by modulating EMT.

7.
Cancer Med ; 9(19): 7125-7136, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810392

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatments and ranks as the second most lethal tumor. Immunotherapy has brought great hope for HCC treatment. Oxysophocarpine is a bioactive alkaloid which poses various pharmacological functions including neuroprotective, anti-virus, anti-convulsant, and anti-nociception. However, there is little systematic study of Oxysophocarpine against HCC and its underlying potential and mechanism combined with immunotherapy in HCC treatment remain poorly unknown. This study was aimed to investigate whether Oxysophocarpine can distinctly suppress HCC cells and sensitize the immunotherapy of CD8+ T cells against HCC. We used HepG2, Hepa1-6, and primary CD8+ T cells to perform in vitro assays and Hepa1-6 subcutaneous tumor to conduct in vivo assay. Oxysophocarpine inhibited the proliferation and increased the apoptosis of HepG2 and Hepa1-6 cells, meanwhile suppressed the migration of HepG2 and Hepa1-6 cells. Oxysophocarpine sensitized the Lag-3 immunotherapy effect of CD8+ T cells against HCC in vivo and in vitro by decreasing Fibrinogen-like protein 1 (FGL1) expression through downregulating IL-6-mediated JAK2/STAT3 signaling, whereas Oxysophocarpine treatment had a little effect of CD8+ T cells cytotoxicity function against HCC with PD-1, Tim-3, or TIGIT blockade. Our studies provided preclinical basis for clinical application of Oxysophocarpine.


Assuntos
Alcaloides/farmacologia , Antígenos CD/metabolismo , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/terapia , Proliferação de Células/efeitos dos fármacos , Fibrinogênio/metabolismo , Neoplasias Hepáticas/terapia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Fibrinogênio/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Proteína do Gene 3 de Ativação de Linfócitos
8.
Front Oncol ; 10: 607593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489916

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant liver tumor worldwide. Tumor recurrence and metastasis contribute to the bad clinical outcome of HCC patients. Substantial studies have displayed lncRNAs modulate various tumorigenic processes of many cancers. Our current work was aimed to investigate the function of LINC00675 in HCC and to recognize the potential interactions between lncRNAs and microRNAs. GFI1 can exhibit a significant role in the progression of human malignant tumors. Firstly, GFI1 was identified using real-time PCR in HCC tissues and cells. In this work, we indicated GFI1 was remarkably reduced in HCC tissues and cells. Meanwhile, GFI1 specifically interacted with the promoter of LINC00675. Up-regulation of LINC00675 obviously repressed the migration and invasion capacity of SMCC-7721 and QGY-7703 cells in vitro. Moreover, decrease of LINC00675 competitively bound to miR-942-5p that contributed to the miRNA-mediated degradation of GFI1, thus facilitated HCC metastasis. The ceRNA function of LINC00675 in HCC cells was assessed and confirmed using RNA immunoprecipitation assay and RNA pull-down assays in our work. Additionally, we proved overexpression of miR-942-5p promoted HCC progression, which was reversed by the up-regulation of GFI1. In summary, LINC00675 might act as a prognostic marker for HCC, which can inhibit HCC development via regulating miR-942-5p and GFI1.

9.
Biomed Pharmacother ; 120: 109551, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31648164

RESUMO

OBJECTIVES: Emerging microRNAs (miRNAs) are validated to take part in pathological processes, including numerous carcinomas. Currently, we focused on the functional role of miR-383 and interleukin-17 (IL-17) in hepatocellular carcinoma (HCC), and the underlying molecular mechanisms were also the emphases in our research. METHODS: We used reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to measure the expression levels of miR-383 in 45 paired tumor tissues and adjacent non-tumor tissues extracted from patients with hepatocellular carcinoma. These tissues were also stained for IL-17 using immunohistochemical staining. Western blot was performed to detect the protein expressions of following protein-coding genes, including p-Stat3, Stat3 and GAPDH. A dual-luciferase activity was carried out to determine whether IL-17 was the downstream gene of miR-383 in hepatocellular carcinoma development. The colony assay, CCK8 assay, and apoptosis assay were used to explore the detailed regulatory effects of miR-383/IL-17 axis in the cellular processes of hepatocellular carcinoma separately. RESULTS: miR-383 was down-regulated significantly in tumor tissues, while IL-17 was up-regulated. IL-17 was certificated to act as the downstream gene of miR-383. Furthermore, overexpression of miR-383 suppressed cell proliferation and promoted apoptosis in hepatocellular carcinoma. However, the raised IL-17 attenuated the inhibition effect of miR-383 in hepatocellular carcinoma. In addition, we found that p-Stat3 was repressed by miR-383, and the up-regulation of IL-17 reversed the suppression effect in hepatocellular carcinoma. CONCLUSIONS: miR-383 may play a anti-tumor role in the pathogenesis of hepatocellular carcinoma by targeting IL-17 through STAT3 signaling pathway. miR-383/IL-17 axis maybe a potent target for the clinical diagnosis and treatment of hepatocellular carcinoma.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Interleucina-17/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Apoptose/genética , Sequência de Bases , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Fosforilação , Regulação para Cima/genética
10.
J Cell Biochem ; 120(11): 18816-18825, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297882

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Nevertheless, its underlying molecular mechanisms are largely unknown. LINC00152 are recently investigated in several cancer types. In our current investigation, we observed LINC00152 was obviously upregulated in HCC cells. LINC00152 was significantly downregulated by infecting LV-shLINC00152 in HepG2 and SNU449 cells. Loss of LINC00152 remarkably repressed HCC cell proliferation, cell colony formation, induced cell apoptosis, and restrained cell migration/invasion. Growing evidence has reported long noncoding RNAs can sponge microRNAs to modulate cancer process. Here, we indicated miR-215 was greatly decreased in HCC and LINC00152 regulated HCC development via sponging miR-215. For another, the binding association between LINC00152 and miR-215 was proved by a series of functional assays. CDK13 was predicted as the target of miR-215. Upregulation of miR-215 greatly depressed CDK13 in HCC cells. Subsequently, the in vivo results demonstrated that silence of LINC00152 restrained HCC development via modulating miR-215 to up-regulate CDK13. Therefore, it was revealed that LINC00152 contributed to the progression of HCC by the modulation of miR-215 and CDK13.


Assuntos
Proteína Quinase CDC2/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Animais , Proteína Quinase CDC2/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
11.
Gene Ther ; 27(10-11): 495-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32042127

RESUMO

Long noncoding RNA OIP5-AS1 has been observed to be increased in several cancers, however, its role and biological mechanism was poorly understood in HCC. Currently, we found OIP5-AS1 expression was upregulated in HCC cells compared with normal human liver cells. Knockdown of OIP5-AS1 suppressed HCC cell proliferation, induced cells cycle arrest and cells apoptosis. In addition, HCC cell migration and invasion capacity in vitro were also inhibited by OIP5-AS1 inhibition. Bioinformatics analysis revealed OIP5-AS1 could interact with miR-363-3p, thereby repressing HCC development. We also observed miR-363-3p was significantly decreased in HCC cells and overexpression of miR-363-3p repressed HCC progression. The correlation between OIP5-AS1 and miR-363-3p was confirmed by performing RIP assay and RNA pull-down assay. Subsequently, SOX4 was predicted as a target of miR-363-3p and miR-363-3p modulated SOX4 levels negatively in vitro. Apart from these, in vivo experiments established that OIP5-AS1 can suppress HCC development through regulating miR-363-3p and SOX4. Collectively, these demonstrated that OIP5-AS1 was involved in HCC progression via targeting miR-363-3p and SOX4. OIP5-AS1 can act as a novel candidate for HCC diagnosis, prognosis, and therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA